Classic Logic Gates TAMU Cyclotron REU Triesha Fagan June 2009

Table of Contents

- Binary Code
- Truth Tables
- Common Logic Gates
- X-Gates
- N-Gates
- Sample Lab

and the second second second second 31118818 8818 81118111811

Binary Code

- Binary Code is used in the computer world to represent number and computer processor instructions.
- The Binary system consists of 2 digits or bits: "1" and "0"
- A Binary string of 8 bits {ex. 0000 0000, 0000 0001} can represent 256 possible values corresponding to symbols, letters, and instructions.
- When dealing with logic gates, the "1" and "0", can represent true or false, logic high or logic low respectively.

ASCII Table

A	SCII	Co	ode:	Cha	irad	ter	to	Binary
0	0011	0000	0	0100	1111	m	0110	1101
1	0011	0001	P	0101	0000	n	0110	1110
2	0011	0010	Q	0101	0001	0	0110	1111
з	0011	0011	R	0101	0010	P	0111	0000
4	0011	0100	S	0101	0011	্ৰ ব	0111	0001
5	0011	0101	т	0101	0100	r	0111	0010
6	0011	0110	υ	0101	0101	s	0111	0011
7	0011	0111	v	0101	0110	t	0111	0100
8	0011	1000	w	0101	0111	u	0111	0101
9	0011	1001	x	0101	1000	v	0111	0110
А	0100	0001	Y	0101	1001	w	0111	0111
в	0100	0010	z	0101	1010	ж	0111	1000
С	0100	0011	a	0110	0001	У	0111	1001
D	0100	0100	ь	0110	0010	z	0111	1010
Е	0100	0101	c	0110	0011	-	0010	1110
F	0100	0110	a	0110	0100	,	0010	0111
G	0100	0111	e	0110	0101	2	0011	1010
н	0100	1000	£	0110	0110	7	0011	1011
I	0100	1001	g	0110	0111	?	0011	1111
J	0100	1010	h	0110	1000	1	0010	0001
ĸ	0100	1011	I	0110	1001		0010	1100
L	0100	1100	j	0110	1010		0010	0010
м	0100	1101	k	0110	1011	(0010	1000
N	0100	1110	1	0110	1100)	0010	1001
						space	0010	0000

Truth Tables

- A truth table is a breakdown of a logic function by listing all possible values the function can attain
- It can be used to tell whether the proposed expression is true for all legitimate input values and is logically valid.
- Truth tables for classical logic are limited to Boolean logical systems in which only two logical values are possible, false and true, usually written F and T, or sometimes 0 or 1, respectively.

What is a Logic Gate:

- A key component of a digital circuit
- The typical logic gate operates on two inputs, and their outputs are determined by their specific function in a digital circuit.
- They accept and output one of two binary conditions, 0 and 1, which represent the voltage level going through a circuit

Types of Logic Gates

Main Gates

- AND gate :	AND gate : a gate that will output a 1 as long as both of its inputs are 1.						
Input1	- Input2	-	Output	AND2			
0	0	-	0				
0	1	-	0				
1	0	-	0	inst			
1	1	-	1				

OR gate: a gate which will output a 1 as long as at least one of its inputs

OP2	are 1.			
	Input1	- Input2	- 1	Output
	0	0	-	0
inst1	0	1	-	1
	1	0	- 1	1
	1	1	-	1
	2.2			

Not gate: a gate which will output the inverse of the signal which it receives.

Input1	-	Output
0	-	1
1	-	0

X-Gates

 - XNor gate: Nor gate: a gate which works as the exact opposite of a XOR gate. It will output a 0 as long as at both inputs that it receives are the same.

-	Input1	- Input2	-	Output
-	0	0	-	1
-	0	1	-	0
-	1	0	1	0
-	1	1	2	0

 XOR or an exclusive-OR gate: a gate which operates opposite of the OR gate. An XOR will only output a 1, when only one but not both of its inputs are 1.

-	Input1	- Input2	- Output	t
-	0	0	- 0	
-	0	1	- 1	
-	1	0	- 1	
	1	1	- 0	

N-Gates

 NAND gate: a gate which works as the exact opposite of a AND gate. It will output a 1 as long as its inputs are not all 1.

NOR2

inst6

-	Input1	- Input2	-	Output
-	0	0	-	1
	0	1	-	1
-	1	0	-	1
-	1	1	-	0

Nor gate: a gate which works as the exact opposite of a OR gate. It will output a 0 as long as at least one of it inputs are 1.
Input1 - Input2 - Output
0 0 - 1
0 1 - 0
- 0 - 0
- 1 - 0
- 1 - 0
- 1 - 0
- 0
- 1 - 0

Requirements

• <u>Requirement #1</u> –

There should be 2 Smoke Detectors, One Sprinkler and One Automatic Telephone Dialer

• Requirement #2 –

If at **least** one of the Smoke Detectors active-low output is asserted then the Sprinklers active-low input should be asserted also.

• <u>Requirement #3</u> –

If **both** of the Smoke Detectors are active-low outputs are asserted then both the sprinkler and the telephone dialer's active-low inputs should be asserted also. The telephone dialer should be placing a call to the fire department.

<u>Active-Low Inputs and Outputs of</u> <u>Smoke Alarm System</u>

SMOKE DETECTOR 1	SMOKE DETECTOR 2	SPRINKLER	TELEPHONE DIALER
1	1	1	1
0	1	0	1
1	0	0	1
0	0	0	0

Block Design of Smoke Alarm System

Design Schematic

Simulation of Design

Simulation mode: Timing

À	Master	Time Bar:	15.28	62 ns 🚺 Poi	nter: 9.39 r	ns Interval:	-5.87 m	: Start:	End:	
A			V;	10.0	ns				20.0 ns	
Æ		Name	1				15.2	62 ns		
Ð,	٥	DET_1_LOW	_							
þ	1	DET_2_LOW								
ÅÅ	@ 2	DIAL_L								
878 24	@3	SPK_L								
)										